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Introduction

Remember Boris Hejblum'’s talk...
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Introduction

The replication crisis in science

(Ess2y |
Why Most Published Research Findings

Are False

John P.A.loannidis

Summary

There is increasing concern that most
current published research findings are
false.The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question, and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field.In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when there is a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research
is not most appropriately represented
and summarized by pvalues, but,
unfununalelv thereis a wldespread

 thnt wradinal vananeak an

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 - B (one minus
the Type II error rate). The probability

Af claimine a ralatinnchin when nana

Corollary 4: The greater the flexibility in designs, definitions, outcomes, and analytical
modes in a scientific field, the less likely the research findings are to be true. Flexibility
increases the potential for transforming what would be “negative” results into “positive” results,
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Introduction

The replication crisis in science

Preclinical research

Psychol
sychology ] [Freedman et al., 2015]

[Open Science Collaboration, 2015
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Introduction

Reasons for the non-replicability of research findings

@ Fraud and scientific misconduct
[Ince, 2011, Chandler et al., 2012, Anaya et al., 2017]
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Introduction

Reasons for the non-replicability of research findings

@ Fraud and scientific misconduct
[Ince, 2011, Chandler et al., 2012, Anaya et al., 2017]

@ Publication bias

[Sterling, 1959, Easterbrook et al., 1991, Begg and Mazumdar, 1994]
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Introduction

Reasons for the non-replicability of research findings

@ Fraud and scientific misconduct
[Ince, 2011, Chandler et al., 2012, Anaya et al., 2017]

@ Publication bias
[Sterling, 1959, Easterbrook et al., 1991, Begg and Mazumdar, 1994]
e Combining the multiplicity of possible analysis strategies with selective
reporting
[loannidis, 2005b, Gelman and Loken, 2014, Goodman et al., 2016]
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Introduction

The multiplicity of analysis strategies in empirical research

Are football referees more likely to give red cards to players with dark skin
than to players with light skin? [Silberzahn and Uhlmann, 2015]

Mario Balotelli, playing for Manchester City, is shown a red card during a match against Arsenal.

A.-L. Boulesteix and S. Hoffmann 9/ 36



Introduction

The multiplicity of analysis strategies in empirical research

Are football referees more likely to give red cards to players with dark skin
than to players with light skin? [Silberzahn and Uhlmann, 2015]

ONE DATA SET, MANY ANALYSTS o

Twenty-nine research teams reached a wide variety of conclusions 1.5
using different methods on the same data set to answer the same
question (about football players’ skin colour and red cards).

Dark-skinned
players four times —

more likely than * Statistically significant
light-skinned effect
players to be given Non-significant
ared card. effect
Twice as likely T

= —

T
Equally likely = [I o

Point estimates and 95% confidence intervals. *Truncated upper bounds.
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Introduction

The multiplicity of analysis strategies in empirical research

... beyond hypothesis testing:

Hypothesis 1:
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Introduction

The multiplicity of analysis strategies and selective reporting

Well-investigated in the context of hypothesis testing

Known as: The garden of forking p-hacks
e “fishing for significance”

P=0.82

P=0.04

@ “p-hacking”

-
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t-test or Mann-Whitney
with equal variance or not
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Fishing for significance/p-hacking

[loannidis, 2005a]:

“Give me information on a single gene and 200 patients, half of them dead, please. | bet that |
can show that this gene affects survival (p<0.05) even if it does not. One can do analyses:
counting or ignoring exact follow-up, censoring at different timepoints, excluding specific causes
of death, exploiting subgroup analyses, using dozens of different cut-offs to decide what
constitutes inappropriate gene expression, and so forth. Without highly specified a priori
hypotheses, there are hundreds of ways to analyse the dullest dataset. Thus, no matter what my
discovery eventually is, it should not be taken seriously, unless it can be shown that the same
exact mode of analysis gets similar results in a different dataset. Validation becomes even more

important when datasets become complex and analytical options increase exponentially.”
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Introduction

Fishing for significance/p-hacking... in simple words
If we test enough times, we finally get something significant—even if there
is actually nothing.

If we fish many fishes, it is likely that one of them will be big even if fishes are
usually small in this lake.

But this result will most likely not be confirmed in replication studies!

if | try to fish again in the same place—for validation purposes—and only try once,
the fish this time will probably not be big again...

A.-L. Boulesteix and S. Hoffmann



Introduction

The multiplicity of analysis strategies and selective reporting

@ cherry-picking
@ data dredging
@ data snooping

A.-L. Boulesteix and S. Hoffmann 14 / 36



The multiplicity of analysis strategies and selective reporting

... beyond hypothesis testing:
@ K =2 or K =10 supervised learning algorithms
@ sample size n = 50 or n = 200

@ nvar = 2,10,200,20000 variables

8 nvar=2 mvar = 10 nvar = 200 nvar = 20000
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[Boulesteix et al., 2017]
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Also widespread in methodological research...

ORIGINAL PAPER

Val. 26 no. 16 2010, pages 1990-1998
doi:10.1093/bicinformatics/biq323

Gene expression

Advance Access publication June 26, 2010

Over-optimism in bioinformatics: an illustration
Monika Jelizarow!, Vincent Guillemot -2, Arthur Tenenhaus?, Korbinian Strimmer® and

Anne-Laure Boulesteix'*

"Department of Medical Informatics, Biometry and Epidemioclogy, University of Munich, Marchioninistr. 15, 81377
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Systems - 3, rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France and 3Department of Medical
Informatics, Statistics and Epidemiology, University of Leipzig, Hartelstr. 16-18, 04107 Leipzig, Germany

Associate Editor: John Quackenbush

ABSTRACT

Motivation: In bioinformatics research, different
optimization mechanisms potentially lead to ‘over-optimism’ in
published papers. So far, however, a systematic critical study
concerning the various sources underlying this over-optimism is
lacking.

Results: We present an empirical study on over-optimism using
high-dimensional classification as example. Specifically, we consider
a ‘promising’ new classification algorithm, namely linear discriminant
analysis incorporating prior knowledge on gene functional groups

statistical

Boulesteix and S. Hoffmann

it would be wrong to report only favorable datasets without
mentioning and/or discussing the other results. This strategy induces
an optimistic bias. This aspect of over-optimism is quantitatively
investigated in the study by Yousefi er al. (2010) and termed as
‘optimization of the dataset” in this article

The second source of over-optimism, which is related to the
optimal choice of the dataset mentioned above, is the optimal choice
of a particular setting in which the superiority of the new algorithm
is more pronounced. For example, researchers could report the
results obtained after a p:lmcular fECIILlIE filtering which favors the
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In this talk

Interdisciplinary perspective on the multiplicity of analysis strategies and
lessons learned across disciplines:

@ general framework to describe sources of uncertainty arising in
empirical research

@ impact on the replicability of research findings

@ potential solutions proposed across disciplines

A.-L. Boulesteix and S. Hoffmann 17 / 36



Introduction

Sources of uncertainty in empirical research
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Sources of uncertainty in empirical research

The multiplicity of analysis strategies in empirical research

Does meat intake Prediction of the
increase the risk of future water mass in
colorectal cancer? seasonal snowpack
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Sources of uncertainty in empirical research

The multiplicity of analysis strategies in empirical research

Does meat intake

increase the risk of

colorectal cancer?

* Define input and
outcome variables
¢ Handle outliers and
missing values

AN

L. Boulesteix and S. Hoffmann

Prediction of the
future water mass in
seasonal snowpack
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|

missing values
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Sources of uncertainty in empirical research

The multiplicity of analysis strategies in empirical research

Does meat intake Prediction of the
increase the risk of future water mass in
colorectal cancer? seasonal snowpack

Define input and
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X1 % * Collect and process
outcome variables 1] 1] input data
¢ Handle outliers and ‘ ‘ ¢ Handle outliers and
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Choose variables
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¢ Choose values for
form model parameters
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Sources of uncertainty in em al research

The multiplicity of analysis strategies in empirical research

Does meat intake Prediction of the
increase the risk of future water mass in
colorectal cancer? seasonal snowpack

Define input and

X1 Xo! Y X1 % * Collect and process
outcome variables 1] 1] input data
¢ Handle outliers and ‘ ‘ ¢ Handle outliers and
missing values n] ol

* Choose variables ¢ Specify model

to include in model TNES structure

* Choose functional 7 e ¢ Choose values for
form

model parameters

A\ /N

Choose method and

¢ Choose methods
method settings to to run and to analyze
estimate parameter vector simulations

/N IV
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Sources of uncertainty in empirical research

Explanatory Predictive
modeling modeling
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Sources of uncertainty in empirical research

Explanatory Predictive
modeling modeling
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Sources of uncertainty in empirical research
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Sources of uncertainty in empirical research
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Sources of uncertainty in empirical research

Explanatory
modeling
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Sources of uncertainty in empirical research

Impact on the replicability of research findings
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Impact on the replicability of research findings
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Impact on the replicability of research findings

Result of
interest

True
value

XStrategy B

Strategy E X

XStrategy A

XStrategy D

Strategy E X

XStrategy E
Strategy D X

¥ Strategy B

Strategy D X

X Strategy C

Original
study

-L. Boulesteix and S. Hoffmann
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Replication
study 2
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Impact on the replicability of research findings
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Impact on the replicability of research findings

Selective reporting of analyses strategies
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Impact on the replicability of research findings

Small sample size and imprecise

Result of
interest

Strategy E X

XStrategy A

Strategy D X

X Strategy C

Original
study

Boulesteix and S. Hoffmann

measurements

XStrategy D
Strategy E X

XStrategy A

X Strategy C
\

Replication
study 1

XStrategy E

Strategy D X

Strategy CX

X Strategy A

Replication
study 2
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Lessons learned across discisplines

Increase
sample size

\

Improve
measurements
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Lessons learned across discisplines

A
Result of

interest

Small sample size and imprecise
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study 1
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Lessons learned across discisplines

Increase
sample size

More
precise
theories
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Standardize Improve
experimental conditions measurements
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Lessons learned across discisplines

[Bradbury and Pliickthun, 2015]: Standardize experimental
conditions

BLAMEIT
ON THE
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‘are pushing for change. [ e - - Y
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monoclonal antibodies

Non-profit distribution
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Lessons learned across discisplines
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Lessons learned across discisplines

Specification curve analysis [Simonsohn et al., 2020]

Interpersonal Trust
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[Rohrer et al., 2017]
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Lessons learned across discisplines

Sensitivity
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Lessons learned across discisplines

Reporting data pre-processing uncertainty

Table 1. Processing choices

1. Assessment of fertility (F)—high vs low.
(@) F1: high = cycle days 7-14; low = cycle days 17-25
(b) F2: high = cycle days 6-14; low = cycle days 17-27 Fiscal political attitudes
(c) F3: high = cycle days 9-17; low = cycle days 18-25
(d) F4: high = cycle days 8-14; low = cycle days 1-7 and

15-28 6-

(e) FS: high = cycle days 9-17; low = cycle days 1-8 and
18-28 E‘

2. Next menstrual onset (NMO) g 4-
(a) NMO1: reported start date previous menstrual onset + g

computed cycle length g 2-

(b) NMO2: reported start date previous menstrual onset +

reported cycle length

(c) NMO3: reported estimate of next menstrual onset 0-

Assessment of relationship status (R) (single vs relationship)

(@) R1: single = response options 1 and 2; relationship =
response options 3 and 4

(b) R2: single = response option 1; relationship = response Voting preferences
options 2, 3, and 4

(c) R3: single = response option 1; relationship = response
options 3 and 4

Exclusion of women based on cycle length (ECL)

(@) ECLL: no exclusion based on cycle length

(b) ECL2: exclusion of participants with computed cycle
length greater than 25 or less than 35 days

(0) ECL3: exclusion of participants with reported cycle
length greater than 25 or less than 35 days

Exclusion of women based on certainty ratings of start dates
of two previous menstrual periods (EC)

(a) ECI: no exclusion based on certainty ratings | r i : I

(b) EC2: exclusion of participants who are not certain about 0.00 0.25 0.50 0.75 1.00
at least one start date (i.e., sure less than 6) p

M““\L | M Ll

0.00 0.25 0.50 0.75 1.00

»

IS

Frequency

o

Multiverse analysis
[Steegen et al., 2016]
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Lessons learned across discisplines

Reporting model uncertainty

B Thyroxine (1SD(log))
Temperature change since 1861 ?a’lﬂ;zié:)s
1 1 1 1 1 1
—— RCP26
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% 6.0 — Historical 0
5 —— CRU )
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© e
g §
g 2.04 2|
o
o
£ 0.0
'20 T T T T T T v " v v
1880 1920 1960 2000 2040 2080 o * MazadRate .
Multi-model projections Vibration of effects
[Chaturvedi et al., 2012] [Patel et al., 2015]

Boulesteix and S. Hoffmann 29 / 36



Lessons learned across discisplines

Integrate Increase Sensitiv_ity Intercomparison
__nteg sample size  Benchmarking analysis studies .
existing knowledge studies Multimodel
/ / ensembles
More P
. Specification .
precise curve Crowdsourcing
theories
/ \ | ™ Vibration
_Standardize - Improve Multiverse of effects
experimental conditions measurements analysis

Boulesteix and S. Hoffmann 29 / 36



Crowdsouring

ONE DATA SET, MANY ANALYSTS o

Twenty-nine research teams reached a wide variety of conclusions 118
using different methods on the same data set to answer the same
question (about football players' skin colour and red cards)

Dark-skinned
players four times

more likely than  Statistically significant
light-skinned effect
players to be given « Non-significant
ared card,
[ wice as kely

r-pH T

T

(= )

Point estimates and 95% confdence intervals. “Truncated upper bounds.

[Silberzahn and Uhlmann, 2015]

Hypothesis 1:
Equal indiference + gain

K
e
e

"B

[Botvinik-Nezer et al., 2020]
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Lessons learned across discisplines

Error in variable of interest and in

djustment variables Model vibration

RHR =146
= RHR = 150
RAC241 RP=449
S0 o 1 50 199
| Density | :
- | |
b3 '
- '

Measurement vibration
-1og10(p)

Hazard Ratio Hazard Ratio

o Intornaton Joumal o Epdemsology, 2020
& ok 10108 eldyanth

Orginal Artcle

Relative Hazard Ratio (strength of vibration)

Original Article

Examining the robustness of observational

iati to model, ement and
sampling uncertainty with the vibration of
effects framework

Simon Kiau © 2+ Sabine Hoffmann, ' Chirag J Patel,*
John P A loannidis,>*’#? and Anne-Laure Boulesteix'*

L. Boulest d S. Hoffmann

10g10(p)

Sampling vibration

Hazard Ratio

Type of vibration
S Measurement
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Sample size
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Lessons learned across discisplines

Sampling vibration

2.00-
A Type of vibration
1.75- & Analysis srategy
= A Samping
5
2 150
k|
&
<1
125
« a A,
a a
1.00
500 5000 15000 50000 84543 ; H
‘Sample size o] i : -
| ' 20
11.0% 3.8% 17% 16% 13% g : . I 1o
11.0% 126% 111% g
Relative impact L | : F; : :
% 7 . :
procossng ) s ! :
Model Y H
Resuls !
75.0% 79.2% 87.3% 85.9% 87.5% F

108
& Data pre-processing vibration
T ROR =135
AL IS RP =688
LMU Moncken | [INSTITUT FUR STATISTIK il n=15000
gender

Simon Klau, Felix Schénbrodt, Chirag Patel, John loannidis,
Anne-Laure Boulesteix, Sabine Hoffmann

Comparing the vibration of effects due to
model, data pre-processing and sampling uncertainty
on a large data set in personality psychology
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Lessons learned across discisplines

Bayesian model averaging

Model Inclusion Based on Best 10 Models

weight

neck

bdomen

thigh

biceps

forearm

wrist

‘ I | e T
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Cumulative Model Probabilities
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Lessons learned across discisplines

Accounting for complex patterns of measurement error

V1i(t)1'--s cum
Vpi(t) Di (t) Dl(t)
a I'd
effect —————— true cumulated  true annual
modifying dose dose

variables Yi Si
' time until death
by lung cancer

Joint work with Raphael Rehms and Nicole Ellenbach

A.-L. Boulesteix and S. Hoffmann

= X2(t)

_

Z8(1)

Ui2

A

annual
exposure
after 1983

Z2(t)

%arved annual
exposure

(Berkson period)

34 / 36



Lessons learned across discisplines

Integrate Increase Sensitivity |ntercomparison
st kg ledge Sample size Benchmarking analysis studies .
existing knowledge studies Computational Multimodel
robustness analysis AN / ensembles
""°Te Specification .
precise curve Crowdsourcing
theories P
/ \ M:nlt;:m;:el | Vibration
_Standardize » Improve 4 Multiverse of effects
experimental conditions measurements analysis
Bayesian Multimodel
model inference
averaging “\.
Structura|\
Regression ~ eduation modeling
calibration |
Bayesian =~ N
hierarchical Super
modeling learner
Simulation / \ _—
extrapolation Bayesian deep Probabilistic
learning sensitivity analysis

Boulesteix and S. Hoffmann

34 / 36



Lessons learned across discisplines

Sensitivity
Integrate Increase

vai Intercomparison
- sample size Benchmarkin analysis studies
existing knowledge P studies 9 Computational Multimodel
robustness analysis ~ / ensembles
""°Te Specification .
precise ——— curve —_— Crowdsourcing
theories
/ \ Multimodel -~ N
analysis | Vibration
Standardize Improve Y Multiverse of effects
experimental conditions measurements analysis
Bayesian Multimodel
model inference
averaging N
DIIStIntgLIISh y Multiple \
ef>l(p ar:a ory arl\ lines of evidence Structural
confirmatory analyses Regression equation modeling
calibration |
Meta-
analysis Bayesian =~ N
\ hierarchical Super
modeling learner
Acknowledge | ) Move to Simulation ‘/ AN _
constraints on Replication p < 0.005 extrapolation Bayesian deep Probabilistic
generality studies learning sensitivity analysis

Boulesteix and S. Hoffmann 34 / 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies

-L. Boulesteix and S. Hoffmann 35/ 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies

If possible, reduce sources of uncertainty before the analysis

-L. Boulesteix and S. Hoffmann 35/ 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies
If possible, reduce sources of uncertainty before the analysis

If possible, integrate remaining sources of uncertainty into the analysis

-L. Boulesteix and S. Hoffmann 35/ 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies
If possible, reduce sources of uncertainty before the analysis
If possible, integrate remaining sources of uncertainty into the analysis

Report the results of alternative analysis strategies to assess
the robustness of results

-L. Boulesteix and S. Hoffmann 35/ 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies
If possible, reduce sources of uncertainty before the analysis
If possible, integrate remaining sources of uncertainty into the analysis

Report the results of alternative analysis strategies to assess
the robustness of results

Acknowledge the inherent uncertainty in your findings

-L. Boulesteix and S. Hoffmann 35/ 36



Lessons learned across discisplines

Recommendations

Be aware of the multiplicity of possible analysis strategies
If possible, reduce sources of uncertainty before the analysis
If possible, integrate remaining sources of uncertainty into the analysis
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@ Increasing amounts of data that are not recorded for research in many
disciplines

@ Reproducibility and transparency as first steps to increase the
replicability and credibility of research findings
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