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Introduction

Remember Boris Hejblum’s talk...

The Turing Way Community and Scriberia. Illustrations from the turing
way book dashes, 2020. URL https://doi.org/10.5281/zenodo.3332808.
https://doi.org/10.5281/zenodo.3695300. [Hejblum et al., 2020]
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Introduction

The replication crisis in science
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Introduction

The replication crisis in science

Psychology
[Open Science Collaboration, 2015]

Preclinical research
[Freedman et al., 2015]

A.-L. Boulesteix and S. Hoffmann Multiplicity of analysis strategies 7 / 36



Introduction

Reasons for the non-replicability of research findings

Fraud and scientific misconduct
[Ince, 2011, Chandler et al., 2012, Anaya et al., 2017]

Publication bias
[Sterling, 1959, Easterbrook et al., 1991, Begg and Mazumdar, 1994]
Combining the multiplicity of possible analysis strategies with selective
reporting
[Ioannidis, 2005b, Gelman and Loken, 2014, Goodman et al., 2016]
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Introduction

The multiplicity of analysis strategies in empirical research

Are football referees more likely to give red cards to players with dark skin
than to players with light skin? [Silberzahn and Uhlmann, 2015]
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Introduction

The multiplicity of analysis strategies in empirical research

... beyond hypothesis testing:

COVID-19 modelling [Botvinik-Nezer et al., 2020]
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Introduction

The multiplicity of analysis strategies and selective reporting

Well-investigated in the context of hypothesis testing

Known as:
“fishing for significance”
“p-hacking”

t-test or Mann-Whitney
with equal variance or not
keeping outliers
or excluding them
or winsorizing them
excluding a subgroup
excluding missing values
or imputing them
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Introduction

Fishing for significance/p-hacking

[Ioannidis, 2005a]:
“Give me information on a single gene and 200 patients, half of them dead, please. I bet that I

can show that this gene affects survival (p<0.05) even if it does not. One can do analyses:

counting or ignoring exact follow-up, censoring at different timepoints, excluding specific causes

of death, exploiting subgroup analyses, using dozens of different cut-offs to decide what

constitutes inappropriate gene expression, and so forth. Without highly specified a priori

hypotheses, there are hundreds of ways to analyse the dullest dataset. Thus, no matter what my

discovery eventually is, it should not be taken seriously, unless it can be shown that the same

exact mode of analysis gets similar results in a different dataset. Validation becomes even more

important when datasets become complex and analytical options increase exponentially.”
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Introduction

Fishing for significance/p-hacking... in simple words

If we test enough times, we finally get something significant—even if there
is actually nothing.

If we fish many fishes, it is likely that one of them will be big even if fishes are
usually small in this lake.

But this result will most likely not be confirmed in replication studies!
if I try to fish again in the same place—for validation purposes—and only try once,
the fish this time will probably not be big again...
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Introduction

The multiplicity of analysis strategies and selective reporting

cherry-picking
data dredging
data snooping
...
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Introduction

The multiplicity of analysis strategies and selective reporting

... beyond hypothesis testing:

K = 2 or K = 10 supervised learning algorithms

sample size n = 50 or n = 200

nvar = 2, 10, 200, 20000 variables

[Boulesteix et al., 2017]
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Introduction

Also widespread in methodological research...
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Introduction

In this talk

Interdisciplinary perspective on the multiplicity of analysis strategies and
lessons learned across disciplines:

general framework to describe sources of uncertainty arising in
empirical research
impact on the replicability of research findings
potential solutions proposed across disciplines
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Sources of uncertainty in empirical research
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Sources of uncertainty in empirical research

The multiplicity of analysis strategies in empirical research
Does meat intake  

increase the risk of  
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 future water mass in  
seasonal snowpack
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Sources of uncertainty in empirical research

Impact on the replicability of research findings

A.-L. Boulesteix and S. Hoffmann Multiplicity of analysis strategies 18 / 36



Impact on the replicability of research findings

XpX1 XpX1

𝒳p

𝒴   +   e

𝒳1 …𝝷

X1 Xp Y
1

n

…

𝒴   (+   e)

X1 Xp

1

t

……
Measurement  

uncertainty{ {
{

𝒳p𝒳1 …𝝷

…

Causal 
hypotheses

Empirical  
findings

𝒴
𝒳1 𝒳p…

Mechanistic 
assumptions

Physical 
 laws Black box 

algorithms

Sampling 
uncertainty

Agnostic Mechanistic 

Predictive  
modeling 

Explanatory  
modeling 

A.-L. Boulesteix and S. Hoffmann Multiplicity of analysis strategies 18 / 36



Impact on the replicability of research findings

Result of  
interest

Original 
study

Replication 
study 1

Replication 
study 2

Strategy B

Strategy A

Strategy D

Strategy C

Strategy E

Strategy E

Strategy A

Strategy C

Strategy D

Strategy B

Strategy B

Strategy D

Strategy C

True 
value

Strategy A

Strategy E

A.-L. Boulesteix and S. Hoffmann Multiplicity of analysis strategies 19 / 36



Impact on the replicability of research findings

XpX1 XpX1

𝒳p

𝒴   +   e

𝒳1 …𝝷

X1 Xp Y
1

n

…

𝒴   (+   e)

X1 Xp

1

t

……

Data  
preprocessing 

uncertainty{ {
Parameter 
uncertainty

Model 
uncertainty{ {

Method 
uncertainty{ {

𝒳p𝒳1 …𝝷

…

Causal 
hypotheses

Empirical  
findings

𝒴
𝒳1 𝒳p…

Mechanistic 
assumptions

Physical 
 laws Black box 

algorithms

Agnostic Mechanistic 

Predictive  
modeling 

Explanatory  
modeling 

A.-L. Boulesteix and S. Hoffmann Multiplicity of analysis strategies 19 / 36



Impact on the replicability of research findings

Selective reporting of analyses strategies
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Lessons learned across discisplines

[Bradbury and Plückthun, 2015]: Standardize experimental
conditions
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Lessons learned across discisplines

Specification curve analysis [Simonsohn et al., 2020]

[Rohrer et al., 2017]
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Lessons learned across discisplines

Reporting data pre-processing uncertainty

Multiverse analysis
[Steegen et al., 2016]
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Lessons learned across discisplines

Reporting model uncertainty

Multi-model projections
[Chaturvedi et al., 2012]

Vibration of effects
[Patel et al., 2015]
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Lessons learned across discisplines

Crowdsouring

[Silberzahn and Uhlmann, 2015] [Botvinik-Nezer et al., 2020]
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Lessons learned across discisplines

Bayesian model averaging
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Lessons learned across discisplines
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Lessons learned across discisplines

Recommendations

Step 1:   
Be aware of the multiplicity of possible analysis strategies
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Conclusion

Conclusion

Multidisciplinary efforts are essential to avoid reinventing the wheel in
every discipline and to generating enough momentum to bring about
change

“The multiplicity of analysis strategies jeopardizes replicability:
Lessons learned across disciplines” by S. Hoffmann, F. Schönbrodt, R.
Elsas, R. Wilson, U. Strasser and A. Boulesteix, available on
Meta-Arxiv, preprint DOI: 10.31222/osf.io/afb9p
Increasing amounts of data that are not recorded for research in many
disciplines
Reproducibility and transparency as first steps to increase the
replicability and credibility of research findings
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Conclusion

Thank you for your attention!
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